FIG. 5. Number of electrons in sample 7B as a function of pressure. The points are the values of n deduced from the experimental data. The lines are calculated from the Kane's $\vec{k} \cdot \vec{p}$ model with $P_K = 8.4 \times 10^{-8}$ eV/cm, $\alpha = dE_g/dP = 7.0 \times 10^{-6}$ eV/bar. kbar), R is constant initially and then shows strong quantum effects but remains negative. The resistivity rises very rapidly with transverse magnetic field from 0.03 $\Omega\,\mathrm{cm}$ to more than 80 $\Omega\,\mathrm{cm}$ at 20 kG. At high fields the Hall angle was less FIG. 6. Electron mobility as a function of pressure for the three samples. The variation of the reciprocal effective mass due to the change in $E_{\mathbf{g}}$ is shown by the dashed lines for comparison. The mobility is seen to increase faster than $1/m^*$ at low pressure, and for sample 7B at 4,2 °K to turn downward above 2 kbar. IABLE I. Values for the carrier concentrations and mobilities at atmospheric pressure, | | | N. 44 | У, | P=0 | 0 | 4.2°K | °K | P = 0 | | |--------|-------------------|---------------------------------------|--|----------------------|---|--------------------------|--------------------------|-----------------------|---| | Sample | × | ρ (cm ⁻³) | μ_{ρ} $(\mathrm{cm}^2 \mathrm{V}^{-1} \mathrm{sec}^{-1})$ | $n \pmod{2}$ | $(\operatorname{cm}^2 \operatorname{V}^{-1} \operatorname{sec}^{-1})$ | ρ
(cm ⁻³) | $(cm^2 V^{-1} sec^{-1})$ | " (cm ⁻³) | $(\mathrm{cm}^2\mathrm{V}^{-1}\mathrm{sec}^{-1})$ | | 7B | 7B 0.149±0.005 | 1, 5×10^{16} ($P > 5$ kbar) | 450 (P>5 kbar) | 5.3×10^{15} | 3.7×10 ⁵ | : | : | 3,4×10 ¹⁴ | 6.3×10 ⁵ | | 7B1. | 0.149 ± 0.005 | 6.3×10^{17} | 174 | 3.0×10^{15} | 3.2×10^4 | 1.5×10^{17} | 92 | 8.8×10^{14} | 4.6×10^4 | | 8B | 0.138 ± 0.005 | 8.3×10^{17} | 168 | 4.8×10^{15} | 2.5×10^4 | 7.6×10^{17} | 78 | 3.2×10^{15} | 1.6×10^4 |